توضیحات محصول
علت اهمیت هوش مصنوعی چیست؟
1)AI یادگیری مکرر و کشف از طریق داده ها را اتوماتیک می کند. ولی AI با اتوماسیون رباتیک مبتنی بر سخت افزار فرق می کند. به جای اتومات کردن کارهای دستی، AI وظایف کامپیوتری شده، حجیم و متناوب را به شکلی قابل اتکا و بدون خستگی انجام می دهد. برای این نوع از اتوماسیون، تحقیق و بررسی توسط انسان هنوز برای راه اندازی سیستم و پرسیدن سوالات مناسب ضروری است.
۲) AI هوش را به محصولات موجود می افزاید. در بیشتر موارد، AI به عنوان یک ابزار مجزا فروخته نخواهد شد. در عوض، محصولاتی که شما هم اکنون در حال استفاده از آنها هستید با قابلیتهای AI بهبود خواهند یافت، تا حدود زیادی شبیه افزوده شدن Siri به عنوان قابلیتی به نسل جدید محصولات اپل. اتوماسیون، پلتفرمهای محاوره ای، باتها و ماشینهای هوشمند را می توان با حجم بالایی از داده ها برای بهبود بسیاری از تکنولوژیها در خانه و در محل کار، از هوش امنیتی تا آنالیز سرمایه گذاری، ترکیب نمود.
۳) AI از طریق الگوریتم های یادگیری مداوم تطابق می یابد تا داده ها بتوانند برنامه نویسی را انجام دهند. AI ساختار و ترتیب داده ها را می یابد تا الگوریتم یک مهارت را کسب کند: الگوریتم به یک طبقه بندی کننده یا یک پیشبینی کننده تبدیل می شود. از این رو، همانگونه که الگوریتم می تواند نحوه بازی شطرنج را به خود بیاموزد، می تواند به خود بیاموزد که چه محصولی را بعدا در محیط آنلاین توصیه نماید. و این مدلها وقتی تطابق می یابند که داده های جدید را کسب کنند. پس انتشار یک تکنیک AI است که امکان تطابق یافتن مدل را، از طریق آموزش و داده های افزوده، در زمانی که پاسخ کاملا درست نباشد فراهم می آورد.
۴) AI داده های بیشتر و عمیقتری را با استفاده از شبکه های عصبی که لایه های مخفی بسیاری دارند آنالیز می کند. ساختن یک سیستم شناسایی تقلب و تخلف با پنج لایه پنهان تا همین چند سال پیش ناممکن بود. امام وضعیت با توان باورنکردنی کامپیوتر و داده های بزرگ تغییر یافت. شما برای آموزش دادن مدلهای یادگیری عمیق به حجم عظیمی از داده نیاز دارید چرا که آنها یادگیری را مستقیما از داده ها انجام می دهند. هرچه داده های بیشتری را بتوانید به آنها تغذیه کنید، آنها دقیقتر می شوند.
۵) AI از طریق شبکه های عصبی عمیق به دقتی باورنکردنی می رسد، چیزی که در گذشته ناممکن بود. به عنوان مثال، تعاملات شما با الکسا، Google Search و Google Photosهمه مبتنی بر یادگیری عمیق هستند – و آنها به مرور که بیشتر از آنها استفاده می کنیم دقیقتر می شوند. در حوزه پزشکی، تکنیکهای AI برگرفته از یادگیری عمیق، طبقه بندی تصویر و تشخیص شیء اکنون برای یافتن سرطان بر روی MRI ها با همان دقت رادیولوژیستهای بسیار آموزش دیده قابل استفاده هستند.
۶) AI بیشترین بهره برداری را از داده ها می کند. وقتی الگوریتمها خودفراگیر باشند، داده ها خودشان به دارایی معنوی تبدیل می شوند. پاسخها در داده ها موجودند؛ فقط باید AI را اعمال کنید تا استخراج شوند. از آنجا که نقش داده ها اکنون بیش از همیشه شده است، این کار می تواند یک مزیت رقباتی را ایجاد نماید. اگر شما بهترین داده ها را در یک صنعت رقابتی داشته باشید، حتی در صورتی که همه تکنیکهای مشابهی را اعمال کنند، پیروزی از آن داده های برتر خواهد بود.
...
بیشتر
دیدگاه خود را ثبت کنید